国内精品久久久久_亚洲区手机在线中文无码播放_国内精品久久久久影院一蜜桃_日韩内射激情视频在线播放免费

      無聲食堂內(nèi)容摘要?

      時(shí)間:2024-11-26 19:40 人氣:0 編輯:招聘街

      一、無聲食堂內(nèi)容摘要?

      中國古訓(xùn)為食不言寢不語,無聲食堂正是這個(gè)古訓(xùn)的現(xiàn)代演繹。用不打擾他人的方式完成自己的就餐,這也是向他人展示自己的一種文明。

      二、倡導(dǎo)無聲食堂:提倡文明用餐的行動(dòng)

      無聲食堂作為一種新興的用餐方式,逐漸引起了人們的關(guān)注和贊成。在這篇文章中,將探討無聲食堂的定義、背景及其對(duì)個(gè)體和社會(huì)的益處。

      無聲食堂的定義

      無聲食堂是在用餐過程中強(qiáng)調(diào)安靜、不談話的一種餐飲環(huán)境。它的概念源于對(duì)各種環(huán)境噪音的反思,以及對(duì)文明用餐行為的提倡。在無聲食堂中,用餐者在沉默中享受食物,通過專注于味覺和思考,重新審視飲食和生活的價(jià)值。

      無聲食堂的背景

      無聲食堂最初起源于東亞地區(qū)的寺廟,作為一種修行的方式。現(xiàn)代社會(huì)中,由于快節(jié)奏和繁忙的生活方式,人們往往忽視了用餐過程中的細(xì)節(jié)和品味,導(dǎo)致了飲食習(xí)慣的不健康和浪費(fèi)食物的現(xiàn)象。無聲食堂的興起,正是回應(yīng)了這種問題,向人們傳達(dá)了用餐是一種儀式,應(yīng)當(dāng)注重品質(zhì)和節(jié)約。

      無聲食堂的益處

      無聲食堂作為一種新的用餐方式,帶來了許多益處。首先,無聲食堂可以幫助人們專注于食物本身,提高味覺的敏感度,從而更好地享受美食。其次,無聲食堂也可以提醒人們用餐時(shí)保持沉默,減少雜音和分散注意力的情況,創(chuàng)造一個(gè)寧靜的用餐環(huán)境。此外,無聲食堂還可以促進(jìn)思考,讓人們?cè)谒伎嫉臅r(shí)候吸收更多的營(yíng)養(yǎng)和靈感。

      結(jié)語

      無聲食堂作為一種倡導(dǎo)文明用餐的行動(dòng),正逐漸受到人們的認(rèn)可和支持。它不僅可以改善個(gè)體的用餐體驗(yàn),還有助于提高餐廳環(huán)境的質(zhì)量。倡導(dǎo)無聲食堂,不僅是對(duì)餐廳環(huán)境的改進(jìn),更是對(duì)個(gè)人用餐行為的呼吁。讓我們用行動(dòng)支持無聲食堂,一起營(yíng)造一個(gè)美好而寧靜的用餐環(huán)境。

      三、探尋無聲食堂:一份感動(dòng)人心的作文

      引言

      無聲食堂,這是一個(gè)備受關(guān)注的話題。它不僅僅是一家餐廳,更是一個(gè)傳遞溫暖的地方。下面我將分享一篇關(guān)于無聲食堂的作文,感受那份振奮人心的情感。

      探尋無聲食堂

      每個(gè)人都有自己的故事,而無聲食堂就像是一個(gè)記錄故事的地方。走進(jìn)無聲食堂,首先映入眼簾的是那份寧靜,仿佛整個(gè)世界都能為之靜止。坐在舒適的座位上,我開始聆聽四周的聲音,卻發(fā)現(xiàn)原來這里的“無聲”并非絕對(duì)的靜默。

      老板和服務(wù)員雖然不用語言與顧客交流,但他們的眼神、微笑和動(dòng)作卻傳遞出深深的關(guān)懷和理解。而餐廳內(nèi)部的布置更是用心之作,簡(jiǎn)約而不簡(jiǎn)單,色彩搭配溫馨,讓人們?cè)谟貌蜁r(shí)也能感受到那份美好。

      無聲食堂給人的啟示

      無聲食堂發(fā)出的聲音或許是不同的,但是它所傳遞的情感卻是深刻而感人的。這種無聲背后,承載著對(duì)于殘障人士的理解和尊重,更是在提醒人們?nèi)リP(guān)注弱勢(shì)群體。對(duì)我而言,無聲食堂是一種信念的延伸,它讓我懂得,溫暖不一定需要言語,關(guān)愛不一定需要流露,心靈的聲音有時(shí)比語言更嘹亮、更深遠(yuǎn)。

      結(jié)語

      無聲食堂,不只是一家餐廳,更是一個(gè)傳遞溫暖的地方。在這樣的地方用餐,不僅能品嘗美味,更能感受到人與人之間的善意和情感交流。讓我們一起努力創(chuàng)造更多這樣溫馨的場(chǎng)所,讓關(guān)愛與溫暖傳遍每個(gè)角落。

      感謝您閱讀完這篇文章,希望這篇作文能帶給您對(duì)無聲食堂的新認(rèn)識(shí)和溫暖的感受。

      四、無聲的風(fēng)無聲的雨無聲的歲月歌名?

      歌曲《想起了你》。

      歌詞:

      飛吧,飛吧

      讓我自由地飛翔在藍(lán)天上,山那一邊

      山那一邊,山的那一邊

      怎么看,也看不見

      你臉上的笑,于是我想走進(jìn)你的夢(mèng)

      讓你快樂,想起了你

      如此美麗,想起了你

      如此遙遠(yuǎn),想起了你

      如此美麗,想起了你

      如此遙遠(yuǎn),開吧

      開吧,任你嬌艷地盛開在春天里

      無聲的風(fēng),無聲的雨

      無聲的歲月,怎么找

      也找不到,你眼中的淚

      于是夜里我等待你盛開在夢(mèng)里,想起了你

      五、寂靜無聲還是幽靜無聲?

      寂靜無聲 : 安靜得沒有聲音 形容非常安靜。一般用來形容夜晚。

      六、mahout面試題?

      之前看了Mahout官方示例 20news 的調(diào)用實(shí)現(xiàn);于是想根據(jù)示例的流程實(shí)現(xiàn)其他例子。網(wǎng)上看到了一個(gè)關(guān)于天氣適不適合打羽毛球的例子。

      訓(xùn)練數(shù)據(jù):

      Day Outlook Temperature Humidity Wind PlayTennis

      D1 Sunny Hot High Weak No

      D2 Sunny Hot High Strong No

      D3 Overcast Hot High Weak Yes

      D4 Rain Mild High Weak Yes

      D5 Rain Cool Normal Weak Yes

      D6 Rain Cool Normal Strong No

      D7 Overcast Cool Normal Strong Yes

      D8 Sunny Mild High Weak No

      D9 Sunny Cool Normal Weak Yes

      D10 Rain Mild Normal Weak Yes

      D11 Sunny Mild Normal Strong Yes

      D12 Overcast Mild High Strong Yes

      D13 Overcast Hot Normal Weak Yes

      D14 Rain Mild High Strong No

      檢測(cè)數(shù)據(jù):

      sunny,hot,high,weak

      結(jié)果:

      Yes=》 0.007039

      No=》 0.027418

      于是使用Java代碼調(diào)用Mahout的工具類實(shí)現(xiàn)分類。

      基本思想:

      1. 構(gòu)造分類數(shù)據(jù)。

      2. 使用Mahout工具類進(jìn)行訓(xùn)練,得到訓(xùn)練模型。

      3。將要檢測(cè)數(shù)據(jù)轉(zhuǎn)換成vector數(shù)據(jù)。

      4. 分類器對(duì)vector數(shù)據(jù)進(jìn)行分類。

      接下來貼下我的代碼實(shí)現(xiàn)=》

      1. 構(gòu)造分類數(shù)據(jù):

      在hdfs主要?jiǎng)?chuàng)建一個(gè)文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數(shù)據(jù)傳到hdfs上面。

      數(shù)據(jù)文件格式,如D1文件內(nèi)容: Sunny Hot High Weak

      2. 使用Mahout工具類進(jìn)行訓(xùn)練,得到訓(xùn)練模型。

      3。將要檢測(cè)數(shù)據(jù)轉(zhuǎn)換成vector數(shù)據(jù)。

      4. 分類器對(duì)vector數(shù)據(jù)進(jìn)行分類。

      這三步,代碼我就一次全貼出來;主要是兩個(gè)類 PlayTennis1 和 BayesCheckData = =》

      package myTesting.bayes;

      import org.apache.hadoop.conf.Configuration;

      import org.apache.hadoop.fs.FileSystem;

      import org.apache.hadoop.fs.Path;

      import org.apache.hadoop.util.ToolRunner;

      import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

      import org.apache.mahout.text.SequenceFilesFromDirectory;

      import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

      public class PlayTennis1 {

      private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

      /*

      * 測(cè)試代碼

      */

      public static void main(String[] args) {

      //將訓(xùn)練數(shù)據(jù)轉(zhuǎn)換成 vector數(shù)據(jù)

      makeTrainVector();

      //產(chǎn)生訓(xùn)練模型

      makeModel(false);

      //測(cè)試檢測(cè)數(shù)據(jù)

      BayesCheckData.printResult();

      }

      public static void makeCheckVector(){

      //將測(cè)試數(shù)據(jù)轉(zhuǎn)換成序列化文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"testinput";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

      String[] params = new String[]{"-i",input,"-o",output,"-ow"};

      ToolRunner.run(sffd, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("文件序列化失敗!");

      System.exit(1);

      }

      //將序列化文件轉(zhuǎn)換成向量文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

      String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

      ToolRunner.run(svfsf, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("序列化文件轉(zhuǎn)換成向量失敗!");

      System.out.println(2);

      }

      }

      public static void makeTrainVector(){

      //將測(cè)試數(shù)據(jù)轉(zhuǎn)換成序列化文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"input";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

      String[] params = new String[]{"-i",input,"-o",output,"-ow"};

      ToolRunner.run(sffd, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("文件序列化失敗!");

      System.exit(1);

      }

      //將序列化文件轉(zhuǎn)換成向量文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

      String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

      ToolRunner.run(svfsf, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("序列化文件轉(zhuǎn)換成向量失敗!");

      System.out.println(2);

      }

      }

      public static void makeModel(boolean completelyNB){

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

      String model = WORK_DIR+Path.SEPARATOR+"model";

      String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

      Path in = new Path(input);

      Path out = new Path(model);

      Path label = new Path(labelindex);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      if(fs.exists(label)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(label, true);

      }

      TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

      String[] params =null;

      if(completelyNB){

      params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

      }else{

      params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

      }

      ToolRunner.run(tnbj, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("生成訓(xùn)練模型失敗!");

      System.exit(3);

      }

      }

      }

      package myTesting.bayes;

      import java.io.IOException;

      import java.util.HashMap;

      import java.util.Map;

      import org.apache.commons.lang.StringUtils;

      import org.apache.hadoop.conf.Configuration;

      import org.apache.hadoop.fs.Path;

      import org.apache.hadoop.fs.PathFilter;

      import org.apache.hadoop.io.IntWritable;

      import org.apache.hadoop.io.LongWritable;

      import org.apache.hadoop.io.Text;

      import org.apache.mahout.classifier.naivebayes.BayesUtils;

      import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

      import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

      import org.apache.mahout.common.Pair;

      import org.apache.mahout.common.iterator.sequencefile.PathType;

      import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

      import org.apache.mahout.math.RandomAccessSparseVector;

      import org.apache.mahout.math.Vector;

      import org.apache.mahout.math.Vector.Element;

      import org.apache.mahout.vectorizer.TFIDF;

      import com.google.common.collect.ConcurrentHashMultiset;

      import com.google.common.collect.Multiset;

      public class BayesCheckData {

      private static StandardNaiveBayesClassifier classifier;

      private static Map<String, Integer> dictionary;

      private static Map<Integer, Long> documentFrequency;

      private static Map<Integer, String> labelIndex;

      public void init(Configuration conf){

      try {

      String modelPath = "/zhoujianfeng/playtennis/model";

      String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

      String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

      String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

      dictionary = readDictionnary(conf, new Path(dictionaryPath));

      documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

      labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

      NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

      classifier = new StandardNaiveBayesClassifier(model);

      } catch (IOException e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("檢測(cè)數(shù)據(jù)構(gòu)造成vectors初始化時(shí)報(bào)錯(cuò)。。。。");

      System.exit(4);

      }

      }

      /**

      * 加載字典文件,Key: TermValue; Value:TermID

      * @param conf

      * @param dictionnaryDir

      * @return

      */

      private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

      Map<String, Integer> dictionnary = new HashMap<String, Integer>();

      PathFilter filter = new PathFilter() {

      @Override

      public boolean accept(Path path) {

      String name = path.getName();

      return name.startsWith("dictionary.file");

      }

      };

      for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

      dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

      }

      return dictionnary;

      }

      /**

      * 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq

      * @param conf

      * @param dictionnaryDir

      * @return

      */

      private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

      Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

      PathFilter filter = new PathFilter() {

      @Override

      public boolean accept(Path path) {

      return path.getName().startsWith("part-r");

      }

      };

      for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

      documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

      }

      return documentFrequency;

      }

      public static String getCheckResult(){

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String classify = "NaN";

      BayesCheckData cdv = new BayesCheckData();

      cdv.init(conf);

      System.out.println("init done...............");

      Vector vector = new RandomAccessSparseVector(10000);

      TFIDF tfidf = new TFIDF();

      //sunny,hot,high,weak

      Multiset<String> words = ConcurrentHashMultiset.create();

      words.add("sunny",1);

      words.add("hot",1);

      words.add("high",1);

      words.add("weak",1);

      int documentCount = documentFrequency.get(-1).intValue(); // key=-1時(shí)表示總文檔數(shù)

      for (Multiset.Entry<String> entry : words.entrySet()) {

      String word = entry.getElement();

      int count = entry.getCount();

      Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,

      if (StringUtils.isEmpty(wordId.toString())){

      continue;

      }

      if (documentFrequency.get(wordId) == null){

      continue;

      }

      Long freq = documentFrequency.get(wordId);

      double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

      vector.setQuick(wordId, tfIdfValue);

      }

      // 利用貝葉斯算法開始分類,并提取得分最好的分類label

      Vector resultVector = classifier.classifyFull(vector);

      double bestScore = -Double.MAX_VALUE;

      int bestCategoryId = -1;

      for(Element element: resultVector.all()) {

      int categoryId = element.index();

      double score = element.get();

      System.out.println("categoryId:"+categoryId+" score:"+score);

      if (score > bestScore) {

      bestScore = score;

      bestCategoryId = categoryId;

      }

      }

      classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

      return classify;

      }

      public static void printResult(){

      System.out.println("檢測(cè)所屬類別是:"+getCheckResult());

      }

      }

      七、webgis面試題?

      1. 請(qǐng)介紹一下WebGIS的概念和作用,以及在實(shí)際應(yīng)用中的優(yōu)勢(shì)和挑戰(zhàn)。

      WebGIS是一種基于Web技術(shù)的地理信息系統(tǒng),通過將地理數(shù)據(jù)和功能以可視化的方式呈現(xiàn)在Web瀏覽器中,實(shí)現(xiàn)地理空間數(shù)據(jù)的共享和分析。它可以用于地圖瀏覽、空間查詢、地理分析等多種應(yīng)用場(chǎng)景。WebGIS的優(yōu)勢(shì)包括易于訪問、跨平臺(tái)、實(shí)時(shí)更新、可定制性強(qiáng)等,但也面臨著數(shù)據(jù)安全性、性能優(yōu)化、用戶體驗(yàn)等挑戰(zhàn)。

      2. 請(qǐng)談?wù)勀赪ebGIS開發(fā)方面的經(jīng)驗(yàn)和技能。

      我在WebGIS開發(fā)方面有豐富的經(jīng)驗(yàn)和技能。我熟悉常用的WebGIS開發(fā)框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能夠使用HTML、CSS和JavaScript等前端技術(shù)進(jìn)行地圖展示和交互設(shè)計(jì),并能夠使用后端技術(shù)如Python、Java等進(jìn)行地理數(shù)據(jù)處理和分析。我還具備數(shù)據(jù)庫管理和地理空間數(shù)據(jù)建模的能力,能夠設(shè)計(jì)和優(yōu)化WebGIS系統(tǒng)的架構(gòu)。

      3. 請(qǐng)描述一下您在以往項(xiàng)目中使用WebGIS解決的具體問題和取得的成果。

      在以往的項(xiàng)目中,我使用WebGIS解決了許多具體問題并取得了顯著的成果。例如,在一次城市規(guī)劃項(xiàng)目中,我開發(fā)了一個(gè)基于WebGIS的交通流量分析系統(tǒng),幫助規(guī)劃師們?cè)u(píng)估不同交通方案的效果。另外,在一次環(huán)境監(jiān)測(cè)項(xiàng)目中,我使用WebGIS技術(shù)實(shí)現(xiàn)了實(shí)時(shí)的空氣質(zhì)量監(jiān)測(cè)和預(yù)警系統(tǒng),提供了準(zhǔn)確的空氣質(zhì)量數(shù)據(jù)和可視化的分析結(jié)果,幫助政府和公眾做出相應(yīng)的決策。

      4. 請(qǐng)談?wù)勀鷮?duì)WebGIS未來發(fā)展的看法和期望。

      我認(rèn)為WebGIS在未來會(huì)繼續(xù)發(fā)展壯大。隨著云計(jì)算、大數(shù)據(jù)和人工智能等技術(shù)的不斷進(jìn)步,WebGIS將能夠處理更大規(guī)模的地理數(shù)據(jù)、提供更豐富的地理分析功能,并與其他領(lǐng)域的技術(shù)進(jìn)行深度融合。我期望未來的WebGIS能夠更加智能化、個(gè)性化,為用戶提供更好的地理信息服務(wù),助力各行各業(yè)的決策和發(fā)展。

      八、freertos面試題?

      這塊您需要了解下stm32等單片機(jī)的基本編程和簡(jiǎn)單的硬件設(shè)計(jì),最好能夠了解模電和數(shù)電相關(guān)的知識(shí)更好,還有能夠會(huì)做操作系統(tǒng),簡(jiǎn)單的有ucos,freeRTOS等等。最好能夠使用PCB畫圖軟件以及keil4等軟件。希望對(duì)您能夠有用。

      九、paas面試題?

      1.負(fù)責(zé)區(qū)域大客戶/行業(yè)客戶管理系統(tǒng)銷售拓展工作,并完成銷售流程;

      2.維護(hù)關(guān)鍵客戶關(guān)系,與客戶決策者保持良好的溝通;

      3.管理并帶領(lǐng)團(tuán)隊(duì)完成完成年度銷售任務(wù)。

      十、面試題類型?

      你好,面試題類型有很多,以下是一些常見的類型:

      1. 技術(shù)面試題:考察候選人技術(shù)能力和經(jīng)驗(yàn)。

      2. 行為面試題:考察候選人在過去的工作或生活中的行為表現(xiàn),以預(yù)測(cè)其未來的表現(xiàn)。

      3. 情境面試題:考察候選人在未知情境下的決策能力和解決問題的能力。

      4. 案例面試題:考察候選人解決實(shí)際問題的能力,模擬真實(shí)工作場(chǎng)景。

      5. 邏輯推理題:考察候選人的邏輯思維能力和分析能力。

      6. 開放性面試題:考察候選人的個(gè)性、價(jià)值觀以及溝通能力。

      7. 挑戰(zhàn)性面試題:考察候選人的應(yīng)變能力和創(chuàng)造力,通常是一些非常具有挑戰(zhàn)性的問題。

      相關(guān)資訊
      熱門頻道

      Copyright © 2024 招聘街 滇ICP備2024020316號(hào)-38

      国内精品久久久久_亚洲区手机在线中文无码播放_国内精品久久久久影院一蜜桃_日韩内射激情视频在线播放免费

        岑溪市| 石渠县| 白城市| 田东县| 巩义市| 张家口市| 台南县| 右玉县| 渑池县| 岐山县| 任丘市| 宁都县| 黑山县| 北京市| 垦利县| 大港区| 红河县| 咸丰县| 英吉沙县| 茶陵县| 九寨沟县| 宁国市| 德兴市| 庆阳市| 尼勒克县| 宁陕县| 易门县| 裕民县| 天镇县| 富裕县| 汝阳县| 沂源县| 湟中县| 屏山县| 安庆市| 吴忠市| 合肥市| 玉树县| 东阿县| 伊川县| 赤峰市|