国内精品久久久久_亚洲区手机在线中文无码播放_国内精品久久久久影院一蜜桃_日韩内射激情视频在线播放免费

      2020亞馬遜研發(fā)費(fèi)用?

      時(shí)間:2025-01-08 17:34 人氣:0 編輯:招聘街

      一、2020亞馬遜研發(fā)費(fèi)用?

      2020年亞馬遜研發(fā)費(fèi)用為400多億美元。

      亞馬遜是信息科技行業(yè)研發(fā)支出最大的公司,自2015年以來(lái),亞馬遜的研發(fā)費(fèi)用就以非常快的速度增長(zhǎng)。2019年,亞馬遜的研發(fā)費(fèi)用約為360億美元,谷歌公司在研發(fā)上花費(fèi)了260億美元,而微軟的研發(fā)費(fèi)用為169億美元。亞馬遜的研發(fā)費(fèi)用在2019年是微軟的兩倍多。

      亞馬遜在所有垂直市場(chǎng)領(lǐng)域的研發(fā)費(fèi)用令競(jìng)爭(zhēng)對(duì)手相形見(jiàn)絀,2020年亞馬遜在研發(fā)方面的支出為400多億美元,谷歌公司2020年的研發(fā)費(fèi)用是273億美元,華為是200億美元,微軟是193億美元(研發(fā)費(fèi)用中有很大一部分用于云計(jì)算和AI),蘋(píng)果是187億美元,三星是178億美元。我們從各個(gè)科技巨頭的年報(bào)中發(fā)現(xiàn)2020年最熱門(mén)研發(fā)市場(chǎng)是:安全,云計(jì)算,AI,數(shù)據(jù),5G,6G以及移動(dòng)化。

      在所有科技公司中,亞馬遜都站在最前沿,成為最具創(chuàng)新能力的公司,這可能和公司的基因有關(guān),探索創(chuàng)新是貝索斯為亞馬遜公司定下的重要原則。我們也可以看到無(wú)論在智能物流,AI,機(jī)器學(xué)習(xí),數(shù)據(jù)庫(kù),還是在探索外太空上,亞馬遜都處于領(lǐng)先地位。

      二、亞馬遜研發(fā)待遇怎么樣?

      還用說(shuō)啊,待遇肯定是杠杠的,你如果之前在阿里巴巴待過(guò),懂得軟件開(kāi)發(fā)以及應(yīng)用然后去亞馬孫,未來(lái)十年你肯定能定居美國(guó)的

      三、Java研發(fā)工程師面試題:探秘Java研發(fā)崗位熱門(mén)問(wèn)題

      Java基礎(chǔ)

      1. 什么是Java?

      2. Java的特點(diǎn)有哪些?

      3. Java的四大特性是什么?

      4. Java中==和equals()的區(qū)別是什么?

      Java集合

      1. Java集合框架有哪些?

      2. ArrayList和LinkedList的區(qū)別是什么?

      3. HashMap和ConcurrentHashMap的區(qū)別是什么?

      多線(xiàn)程

      1. 什么是線(xiàn)程安全?Java中如何實(shí)現(xiàn)線(xiàn)程安全?

      2. synchronized關(guān)鍵字和Lock有什么區(qū)別?

      數(shù)據(jù)庫(kù)

      1. 什么是SQL注入?如何防止SQL注入攻擊?

      2. 簡(jiǎn)述MySQL和Oracle的區(qū)別?

      框架

      1. Spring框架的核心功能是什么?

      2. MyBatis框架的優(yōu)缺點(diǎn)有哪些?

      感謝閱讀完這篇文章,希望這些問(wèn)題能幫助您在Java研發(fā)工程師面試中更好地準(zhǔn)備自己,取得理想的工作機(jī)會(huì)。

      四、亞馬遜研發(fā)費(fèi)用為什么那么高?

      亞馬遜研發(fā)費(fèi)用之所以高昂,是因?yàn)閬嗰R遜一直致力于創(chuàng)新和技術(shù)發(fā)展。作為全球最大的電子商務(wù)公司之一,亞馬遜需要不斷投入大量資金用于研發(fā)新產(chǎn)品、改進(jìn)現(xiàn)有技術(shù)和開(kāi)發(fā)新的商業(yè)模式。

      此外,亞馬遜還積極投資于人工智能、物聯(lián)網(wǎng)、云計(jì)算等領(lǐng)域,以提升其技術(shù)競(jìng)爭(zhēng)力和服務(wù)質(zhì)量。

      這些投入不僅能夠推動(dòng)亞馬遜的業(yè)務(wù)增長(zhǎng),還能夠滿(mǎn)足消費(fèi)者不斷變化的需求,保持市場(chǎng)領(lǐng)先地位。

      五、mahout面試題?

      之前看了Mahout官方示例 20news 的調(diào)用實(shí)現(xiàn);于是想根據(jù)示例的流程實(shí)現(xiàn)其他例子。網(wǎng)上看到了一個(gè)關(guān)于天氣適不適合打羽毛球的例子。

      訓(xùn)練數(shù)據(jù):

      Day Outlook Temperature Humidity Wind PlayTennis

      D1 Sunny Hot High Weak No

      D2 Sunny Hot High Strong No

      D3 Overcast Hot High Weak Yes

      D4 Rain Mild High Weak Yes

      D5 Rain Cool Normal Weak Yes

      D6 Rain Cool Normal Strong No

      D7 Overcast Cool Normal Strong Yes

      D8 Sunny Mild High Weak No

      D9 Sunny Cool Normal Weak Yes

      D10 Rain Mild Normal Weak Yes

      D11 Sunny Mild Normal Strong Yes

      D12 Overcast Mild High Strong Yes

      D13 Overcast Hot Normal Weak Yes

      D14 Rain Mild High Strong No

      檢測(cè)數(shù)據(jù):

      sunny,hot,high,weak

      結(jié)果:

      Yes=》 0.007039

      No=》 0.027418

      于是使用Java代碼調(diào)用Mahout的工具類(lèi)實(shí)現(xiàn)分類(lèi)。

      基本思想:

      1. 構(gòu)造分類(lèi)數(shù)據(jù)。

      2. 使用Mahout工具類(lèi)進(jìn)行訓(xùn)練,得到訓(xùn)練模型。

      3。將要檢測(cè)數(shù)據(jù)轉(zhuǎn)換成vector數(shù)據(jù)。

      4. 分類(lèi)器對(duì)vector數(shù)據(jù)進(jìn)行分類(lèi)。

      接下來(lái)貼下我的代碼實(shí)現(xiàn)=》

      1. 構(gòu)造分類(lèi)數(shù)據(jù):

      在hdfs主要?jiǎng)?chuàng)建一個(gè)文件夾路徑 /zhoujainfeng/playtennis/input 并將分類(lèi)文件夾 no 和 yes 的數(shù)據(jù)傳到hdfs上面。

      數(shù)據(jù)文件格式,如D1文件內(nèi)容: Sunny Hot High Weak

      2. 使用Mahout工具類(lèi)進(jìn)行訓(xùn)練,得到訓(xùn)練模型。

      3。將要檢測(cè)數(shù)據(jù)轉(zhuǎn)換成vector數(shù)據(jù)。

      4. 分類(lèi)器對(duì)vector數(shù)據(jù)進(jìn)行分類(lèi)。

      這三步,代碼我就一次全貼出來(lái);主要是兩個(gè)類(lèi) PlayTennis1 和 BayesCheckData = =》

      package myTesting.bayes;

      import org.apache.hadoop.conf.Configuration;

      import org.apache.hadoop.fs.FileSystem;

      import org.apache.hadoop.fs.Path;

      import org.apache.hadoop.util.ToolRunner;

      import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

      import org.apache.mahout.text.SequenceFilesFromDirectory;

      import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

      public class PlayTennis1 {

      private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

      /*

      * 測(cè)試代碼

      */

      public static void main(String[] args) {

      //將訓(xùn)練數(shù)據(jù)轉(zhuǎn)換成 vector數(shù)據(jù)

      makeTrainVector();

      //產(chǎn)生訓(xùn)練模型

      makeModel(false);

      //測(cè)試檢測(cè)數(shù)據(jù)

      BayesCheckData.printResult();

      }

      public static void makeCheckVector(){

      //將測(cè)試數(shù)據(jù)轉(zhuǎn)換成序列化文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"testinput";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

      String[] params = new String[]{"-i",input,"-o",output,"-ow"};

      ToolRunner.run(sffd, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("文件序列化失敗!");

      System.exit(1);

      }

      //將序列化文件轉(zhuǎn)換成向量文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

      String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

      ToolRunner.run(svfsf, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("序列化文件轉(zhuǎn)換成向量失敗!");

      System.out.println(2);

      }

      }

      public static void makeTrainVector(){

      //將測(cè)試數(shù)據(jù)轉(zhuǎn)換成序列化文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"input";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

      String[] params = new String[]{"-i",input,"-o",output,"-ow"};

      ToolRunner.run(sffd, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("文件序列化失敗!");

      System.exit(1);

      }

      //將序列化文件轉(zhuǎn)換成向量文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

      String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

      ToolRunner.run(svfsf, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("序列化文件轉(zhuǎn)換成向量失敗!");

      System.out.println(2);

      }

      }

      public static void makeModel(boolean completelyNB){

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

      String model = WORK_DIR+Path.SEPARATOR+"model";

      String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

      Path in = new Path(input);

      Path out = new Path(model);

      Path label = new Path(labelindex);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      if(fs.exists(label)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(label, true);

      }

      TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

      String[] params =null;

      if(completelyNB){

      params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

      }else{

      params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

      }

      ToolRunner.run(tnbj, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("生成訓(xùn)練模型失敗!");

      System.exit(3);

      }

      }

      }

      package myTesting.bayes;

      import java.io.IOException;

      import java.util.HashMap;

      import java.util.Map;

      import org.apache.commons.lang.StringUtils;

      import org.apache.hadoop.conf.Configuration;

      import org.apache.hadoop.fs.Path;

      import org.apache.hadoop.fs.PathFilter;

      import org.apache.hadoop.io.IntWritable;

      import org.apache.hadoop.io.LongWritable;

      import org.apache.hadoop.io.Text;

      import org.apache.mahout.classifier.naivebayes.BayesUtils;

      import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

      import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

      import org.apache.mahout.common.Pair;

      import org.apache.mahout.common.iterator.sequencefile.PathType;

      import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

      import org.apache.mahout.math.RandomAccessSparseVector;

      import org.apache.mahout.math.Vector;

      import org.apache.mahout.math.Vector.Element;

      import org.apache.mahout.vectorizer.TFIDF;

      import com.google.common.collect.ConcurrentHashMultiset;

      import com.google.common.collect.Multiset;

      public class BayesCheckData {

      private static StandardNaiveBayesClassifier classifier;

      private static Map<String, Integer> dictionary;

      private static Map<Integer, Long> documentFrequency;

      private static Map<Integer, String> labelIndex;

      public void init(Configuration conf){

      try {

      String modelPath = "/zhoujianfeng/playtennis/model";

      String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

      String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

      String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

      dictionary = readDictionnary(conf, new Path(dictionaryPath));

      documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

      labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

      NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

      classifier = new StandardNaiveBayesClassifier(model);

      } catch (IOException e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("檢測(cè)數(shù)據(jù)構(gòu)造成vectors初始化時(shí)報(bào)錯(cuò)。。。。");

      System.exit(4);

      }

      }

      /**

      * 加載字典文件,Key: TermValue; Value:TermID

      * @param conf

      * @param dictionnaryDir

      * @return

      */

      private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

      Map<String, Integer> dictionnary = new HashMap<String, Integer>();

      PathFilter filter = new PathFilter() {

      @Override

      public boolean accept(Path path) {

      String name = path.getName();

      return name.startsWith("dictionary.file");

      }

      };

      for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

      dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

      }

      return dictionnary;

      }

      /**

      * 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq

      * @param conf

      * @param dictionnaryDir

      * @return

      */

      private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

      Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

      PathFilter filter = new PathFilter() {

      @Override

      public boolean accept(Path path) {

      return path.getName().startsWith("part-r");

      }

      };

      for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

      documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

      }

      return documentFrequency;

      }

      public static String getCheckResult(){

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String classify = "NaN";

      BayesCheckData cdv = new BayesCheckData();

      cdv.init(conf);

      System.out.println("init done...............");

      Vector vector = new RandomAccessSparseVector(10000);

      TFIDF tfidf = new TFIDF();

      //sunny,hot,high,weak

      Multiset<String> words = ConcurrentHashMultiset.create();

      words.add("sunny",1);

      words.add("hot",1);

      words.add("high",1);

      words.add("weak",1);

      int documentCount = documentFrequency.get(-1).intValue(); // key=-1時(shí)表示總文檔數(shù)

      for (Multiset.Entry<String> entry : words.entrySet()) {

      String word = entry.getElement();

      int count = entry.getCount();

      Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,

      if (StringUtils.isEmpty(wordId.toString())){

      continue;

      }

      if (documentFrequency.get(wordId) == null){

      continue;

      }

      Long freq = documentFrequency.get(wordId);

      double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

      vector.setQuick(wordId, tfIdfValue);

      }

      // 利用貝葉斯算法開(kāi)始分類(lèi),并提取得分最好的分類(lèi)label

      Vector resultVector = classifier.classifyFull(vector);

      double bestScore = -Double.MAX_VALUE;

      int bestCategoryId = -1;

      for(Element element: resultVector.all()) {

      int categoryId = element.index();

      double score = element.get();

      System.out.println("categoryId:"+categoryId+" score:"+score);

      if (score > bestScore) {

      bestScore = score;

      bestCategoryId = categoryId;

      }

      }

      classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

      return classify;

      }

      public static void printResult(){

      System.out.println("檢測(cè)所屬類(lèi)別是:"+getCheckResult());

      }

      }

      六、webgis面試題?

      1. 請(qǐng)介紹一下WebGIS的概念和作用,以及在實(shí)際應(yīng)用中的優(yōu)勢(shì)和挑戰(zhàn)。

      WebGIS是一種基于Web技術(shù)的地理信息系統(tǒng),通過(guò)將地理數(shù)據(jù)和功能以可視化的方式呈現(xiàn)在Web瀏覽器中,實(shí)現(xiàn)地理空間數(shù)據(jù)的共享和分析。它可以用于地圖瀏覽、空間查詢(xún)、地理分析等多種應(yīng)用場(chǎng)景。WebGIS的優(yōu)勢(shì)包括易于訪(fǎng)問(wèn)、跨平臺(tái)、實(shí)時(shí)更新、可定制性強(qiáng)等,但也面臨著數(shù)據(jù)安全性、性能優(yōu)化、用戶(hù)體驗(yàn)等挑戰(zhàn)。

      2. 請(qǐng)談?wù)勀赪ebGIS開(kāi)發(fā)方面的經(jīng)驗(yàn)和技能。

      我在WebGIS開(kāi)發(fā)方面有豐富的經(jīng)驗(yàn)和技能。我熟悉常用的WebGIS開(kāi)發(fā)框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能夠使用HTML、CSS和JavaScript等前端技術(shù)進(jìn)行地圖展示和交互設(shè)計(jì),并能夠使用后端技術(shù)如Python、Java等進(jìn)行地理數(shù)據(jù)處理和分析。我還具備數(shù)據(jù)庫(kù)管理和地理空間數(shù)據(jù)建模的能力,能夠設(shè)計(jì)和優(yōu)化WebGIS系統(tǒng)的架構(gòu)。

      3. 請(qǐng)描述一下您在以往項(xiàng)目中使用WebGIS解決的具體問(wèn)題和取得的成果。

      在以往的項(xiàng)目中,我使用WebGIS解決了許多具體問(wèn)題并取得了顯著的成果。例如,在一次城市規(guī)劃項(xiàng)目中,我開(kāi)發(fā)了一個(gè)基于WebGIS的交通流量分析系統(tǒng),幫助規(guī)劃師們?cè)u(píng)估不同交通方案的效果。另外,在一次環(huán)境監(jiān)測(cè)項(xiàng)目中,我使用WebGIS技術(shù)實(shí)現(xiàn)了實(shí)時(shí)的空氣質(zhì)量監(jiān)測(cè)和預(yù)警系統(tǒng),提供了準(zhǔn)確的空氣質(zhì)量數(shù)據(jù)和可視化的分析結(jié)果,幫助政府和公眾做出相應(yīng)的決策。

      4. 請(qǐng)談?wù)勀鷮?duì)WebGIS未來(lái)發(fā)展的看法和期望。

      我認(rèn)為WebGIS在未來(lái)會(huì)繼續(xù)發(fā)展壯大。隨著云計(jì)算、大數(shù)據(jù)和人工智能等技術(shù)的不斷進(jìn)步,WebGIS將能夠處理更大規(guī)模的地理數(shù)據(jù)、提供更豐富的地理分析功能,并與其他領(lǐng)域的技術(shù)進(jìn)行深度融合。我期望未來(lái)的WebGIS能夠更加智能化、個(gè)性化,為用戶(hù)提供更好的地理信息服務(wù),助力各行各業(yè)的決策和發(fā)展。

      七、freertos面試題?

      這塊您需要了解下stm32等單片機(jī)的基本編程和簡(jiǎn)單的硬件設(shè)計(jì),最好能夠了解模電和數(shù)電相關(guān)的知識(shí)更好,還有能夠會(huì)做操作系統(tǒng),簡(jiǎn)單的有ucos,freeRTOS等等。最好能夠使用PCB畫(huà)圖軟件以及keil4等軟件。希望對(duì)您能夠有用。

      八、paas面試題?

      1.負(fù)責(zé)區(qū)域大客戶(hù)/行業(yè)客戶(hù)管理系統(tǒng)銷(xiāo)售拓展工作,并完成銷(xiāo)售流程;

      2.維護(hù)關(guān)鍵客戶(hù)關(guān)系,與客戶(hù)決策者保持良好的溝通;

      3.管理并帶領(lǐng)團(tuán)隊(duì)完成完成年度銷(xiāo)售任務(wù)。

      九、面試題類(lèi)型?

      你好,面試題類(lèi)型有很多,以下是一些常見(jiàn)的類(lèi)型:

      1. 技術(shù)面試題:考察候選人技術(shù)能力和經(jīng)驗(yàn)。

      2. 行為面試題:考察候選人在過(guò)去的工作或生活中的行為表現(xiàn),以預(yù)測(cè)其未來(lái)的表現(xiàn)。

      3. 情境面試題:考察候選人在未知情境下的決策能力和解決問(wèn)題的能力。

      4. 案例面試題:考察候選人解決實(shí)際問(wèn)題的能力,模擬真實(shí)工作場(chǎng)景。

      5. 邏輯推理題:考察候選人的邏輯思維能力和分析能力。

      6. 開(kāi)放性面試題:考察候選人的個(gè)性、價(jià)值觀以及溝通能力。

      7. 挑戰(zhàn)性面試題:考察候選人的應(yīng)變能力和創(chuàng)造力,通常是一些非常具有挑戰(zhàn)性的問(wèn)題。

      十、cocoscreator面試題?

      需要具體分析 因?yàn)閏ocoscreator是一款游戲引擎,面試時(shí)的問(wèn)題會(huì)涉及到不同的方面,如開(kāi)發(fā)經(jīng)驗(yàn)、游戲設(shè)計(jì)、圖形學(xué)等等,具體要求也會(huì)因公司或崗位而異,所以需要根據(jù)實(shí)際情況進(jìn)行具體分析。 如果是針對(duì)開(kāi)發(fā)經(jīng)驗(yàn)的問(wèn)題,可能會(huì)考察候選人是否熟悉cocoscreator常用API,是否能夠獨(dú)立開(kāi)發(fā)小型游戲等等;如果是針對(duì)游戲設(shè)計(jì)的問(wèn)題,則需要考察候選人對(duì)游戲玩法、關(guān)卡設(shè)計(jì)等等方面的理解和能力。因此,需要具體分析才能得出準(zhǔn)確的回答。

      相關(guān)資訊
      熱門(mén)頻道

      Copyright © 2024 招聘街 滇ICP備2024020316號(hào)-38

      国内精品久久久久_亚洲区手机在线中文无码播放_国内精品久久久久影院一蜜桃_日韩内射激情视频在线播放免费

        普兰店市| 老河口市| 德阳市| 邢台市| 衡东县| 白银市| 富顺县| 抚远县| 凌源市| 成武县| 惠水县| 甘孜| 宁海县| 枣强县| 兰溪市| 鲁甸县| 梓潼县| 牡丹江市| 富宁县| 视频| 响水县| 易门县| 英德市| 平罗县| 河北省| 拉孜县| 定边县| 丰镇市| 安达市| 敦煌市| 林周县| 合山市| 禄劝| 鞍山市| 夏津县| 舞钢市| 富平县| 内乡县| 衡水市| 平安县| 镇坪县|